I Semester B.C.A. Degree Examination, Nov./Dec. 2016 (CBCS)

(F + R) (2014-15 and Onwards) COMPUTER SCIENCE BCA 104 : Digital Electronics

Time: 3 Hours

Max. Marks: 70

Instruction: Answer all Sections.

SECTION - A

I. Answer any ten questions:

(10×2=20)

- 1) State and explain Ohm's law.
- 2) List the applications of superposition theorem.
- 3) Define the terms waveform and time period.
- 4) What is a semiconductor? Give an example.
- 5) Differentiate between half-wave and full-wave rectifiers.
- 6) Find the 2's complement of 00110011.
- 7) Prove that x(x+y) = x.
- 8) Write the logic symbol and truth table for X-NOR gate.
- 9) What is a multiplexer? Write the logic symbol for 4-bit multiplexer.
- 10) What is a sequential circuit? Explain.
- 11) What is an half-adder ? Write its truth table.
- 12) Explain the important characteristics of flip-flops.

3

SECTION-B

II. Answer any five questions:

13) a) Explain Thevenin's theorem in detail.

5

b) Find the currents in various branches of the circuit by nodal voltage analysis.

		EF	
1	4) a	Define peak value, rms value, average value, frequency for a time wave. Explain the energy levels and energy bands of orbits in an atom with a neat diagram.	5
1	5) a b	Explain p-n junction with a neat diagram. Write a note on TTL and CMOS.	5 5
1	6) a b	Convert $(4096.3125)_{10} = (?)_2$ and $(36F.ABC)_{16} = (?)_{10}$ What is a self-complementing code? Prove how weighted code 2421 is a self-complementing code.	4
17	7) a) b)	State and prove Demorgan's theorem. Simplify using K-map, $F(A, B, C, D) = \sum (4, 6, 8, 10, 11, 12, 15) + d(3, 5, 7, 9).$	5
18	B) a) b)	Realize the basic gates using NAND gate. Explain the working of 4-bit binary adder-subtracter with a neat logic diagram.	3
19) a)	Write the logic diagram and truth table for decimal to BCD encoder. Explain the working of JK flip-flop with logic diagram and truth table.	7
20) a)	Explain SISO and PIPO shift registers.	6 7

b) Write a brief note on applications of shift register.